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design. This refers to the set of experiments (stimuli) required
to elicit the system response sufÞciently to identify the model
parameters. The third is the model generation procedure. This
is the algorithm used to determine the model parameters from
the data obtained from the experiments.

Requirements for a robust behavioral modeling process in-
clude the ability to characterize, quickly, the component or cir-
cuit-level model, and construct the behavioral model in a repeat-
able, procedural, and automated way. The excitations should be
as few in number as possible for the particular model class. Ide-
ally, each experiment can be used to identify a particular model
parameter uniquely and independently. In an optimal design,
each additional experiment provides totally new, orÒorthog-
onalÓinformation [4].

In [5], a black-box frequency-domain behavioral model,
generalized from the work of [6], was identiÞed from real
automated measurements on a wide-band microwave IC am-
pliÞer using a VNNA [7]. This measurement-based behavioral
model was experimentally demonstrated to be valid for small
and large amplitude drive signals, correctly predict even and
odd harmonics, and simulate accurately even into impedances
different from the 50- environment in which the data was
measured. One limitation of the usefulness of the model is the
limited dynamic range of the VNNA instrument, which can
be estimated from the data in [5]. Nevertheless, the results of
[5] demonstrate that the behavioral model, together with the
automated VNNA measurements to identify it, provide a gen-
eral, practical, and useful tool. Moreover, recent large-signal
hardware developments [8] signiÞcantly demonstrate improved
dynamic range that will only increase the general utility of the
approach. Another limitation of [5] is the suboptimal nature of
the experiment design and model identiÞcation algorithm. That
is the subject of this study.

In this paper, we present a superior experiment design ap-
proach and an improved algorithm for identifying, from this
different set of data, the behavioral model discussed in [5]. In
fact, the approach is both orthogonal and optimal in the sense
it uses the minimum number of independent measurements.
We apply the new approaches to generate accurate behavioral
models from detailed circuit-level models of real microwave
ICs using the nonlinear simulator as a virtual instrument. New
results, including the prediction of ACPR andI–Q constellation
diagrams by the behavioral model are presented and validated.
In combination with [5], this study completes theÒclosing of
the loopÓto include both simulation- and measurement-based
approaches to generating the same frequency-domain nonlinear
behavioral model.

In Section II, we brießy review the poly-harmonic distortion
(PHD) behavioral model. In Section III, we describe the new
experiment design and model generation algorithms. In Sec-
tion IV, we compare the approach to other work in the literature.
In Section V, we present new results validating the PHD model
against the circuit model from which it was derived.

II. PHD MODEL FORMULATION

The target behavioral model for this study was presented in
[5], which generalized the workÞrst presented in [6] and sum-

marized in [2, Ch. 5]. It is aÒblack-boxÓbehavioral model re-
quiring noa priori knowledge of the device physics or circuit
conÞguration of the nonlinear component. The model theory
derives from a multiharmonic linearization around a periodic
steady state determined by a large-amplitude single input tone.
For this reason, we refer to the model as the PHD model. The
assumption is that the system to be modeled can depend in a
strongly nonlinear way on its large-signal drive, but neverthe-
less responds linearly to additional signal components at the har-
monic frequencies considered asÒsmallÓperturbations around
the time-varying system state. This is referred to as theÒhar-
monic superpositionÓprinciple [6]. The harmonic superposition
principle has been shown in [2, Ch. 5], [5], and [6] to be an ap-
proximation well satisÞed by power ampliÞers of several dif-
ferent classes and for applications where the functional block
is inserted into impedance environments mismatched somewhat
from 50 at both the fundamental and harmonics. In real ap-
plications, for example, these harmonic terms can result from
nonlinearities created from previous ampliÞcation stages or re-
ßections from nonlinear devices at the next input stage of a
multistage ampliÞer. The broad-band nature of the model is
essential for modeling the frequency dependences of the non-
linear responses of such microwave ICs as multiple-octave trav-
eling-wave ampliÞers and other components useful in instru-
ment applications.

The model is deÞned by (1) and (2) in the frequency domain
relating complex transmitted and scattered waves at each port

and harmonic index to a linear combination of terms in the
incident wavesand their complex conjugatesindependently at
each port at each harmonic. The fact that the complex conjugate
terms appear is a necessary consequence of the nonanalyticity
of the Jacobian, which represents the linearization around the
time-varying operating point established by the single large-am-
plitude tone in the absence of perturbation. An alternative expla-
nation follows from the mixer analysis of Section III. The sums
in (1) are over all port indexes, and harmonic indices(DC is
excluded in the cases presented here so the sum overstarts at
the fundamental. In general, this method can easily be extended
to include the dc term, in which case, the sum starts from index
0.)

(1)

(2)

In (1), is a pure phase that, along with
the magnitude-only dependence on of the and func-
tions, is a necessary consequence of the assumed time invari-
ance of the underlying system. A redundancy, introduced by
summing over the fundamental components in addi-
tion to the harmonics in (1), requires the imposition of the addi-
tional constraints given by (2). For all but one of the applications
demonstrated in Section VI, we consider a two-port ampliÞer
model withÞve harmonics. TheÞnal result was obtained con-
sidering only three harmonics.



3658 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 11, NOVEMBER 2005

III. EXCITATION DESIGN

In [5], the excitation design for the PHD model was based on
perturbing the nonlinear component under a large-signal drive
by applying several small tones one at a time at each port and at
each harmonic of the fundamental. This was done for each har-
monic up to the maximum number needed for the model (or, for
the measurement-based case, the limitation of the instrumentÕs
bandwidth). The structure of model (1) and (2) is such that, in
principle, the and coefÞcients at each harmonic can be ex-
tracted directly from three measurements. These measurements
are: 1) the responses at each port and at each harmonic frequency
to the large tone without perturbation; 2) the responses to the si-
multaneous excitation of the large tone and a small-signal per-
turbation tone; and 3) the responses to a simultaneous excita-
tion of the large tone and a small-signal perturbation tone at a
the same frequency, but different phase compared to the small
tone of 2). The component of the-wave at each port and at
each harmonic has contributions from bothand ; the two
relative phases per frequency per port for the small tones were
proposed in order to provide two independent data forfrom
which to determine the two model coefÞcients ( and ) for a
given harmonic frequency component of the response.

The improved experiment design is based on considering
model (1) and (2) as the limiting case of a more general
time-varying nonlinear system perturbed by an arbitrary small
tone. Here the restriction that the frequency of the perturbation
tone is exactly at a harmonic of the fundamental is relaxed.
Such a system can be analyzed as a mixer. Moreover, if the per-
turbing tone is sufÞciently small, the analysis can be considered
to be that of aÒsmall-signal mixerÓ(SM).

The derivation is outlined for a single port. The extension
to multiple ports is obvious. We start in the time domain by
representing the output wave as a nonlinear function of the
input wave according to (3) as follows:

(3)

These are real signals and, in (3), the nonlinearity is algebraic
(this restriction is not necessary, but facilitates a simpler way to
the result). We now consider the input signal class to be the sum
of a single large tone at frequency and a small-signal

at frequency as follows:

(4)

We assume the perturbation is small, and expand (4) in a
Taylor series and keep terms only up throughÞrst order as fol-
lows:

(5)

Identifying , the linear response is given by
(6) as follows:

(6)

Since is periodic, we can expand theÞrst term on the
right-hand side of the equal sign of (6), the conductance nonlin-
earity, in a Fourier series in as follows:

(7)

The perturbation tone is represented in the frequency domain
as follows:

(8)

Here, and is a small (in magnitude) complex
number.

Note that we are dealing with two periodic signals with un-
related fundamental periods (7) corresponding to the system re-
sponse to a large tone at, and (8), the small tone at . Mul-
tiplying out the factors in (6) using (7) and (8) results in the
following expression for :

(9)

For future reference, we designate the third through sixth
terms of (9) as (a)Ð(d), respectively.

We now consider the special case where the frequency of the
small tone is nearly a harmonic (integer multiple) of the funda-
mental of the large tone, i.e., . Here, is a positive
inÞnitesimal. The frequency offset will allow us to refer to the
stimulus at frequency as theupper sideband stimulusat fre-
quency .

The objective is to pick out the complex spectral components
of the response in the frequency domain at the harmonic
frequencies for nonnegative integers . We
can break up the contributions into terms proportional toand

separately. For simplicity, we assume there are no dc compo-
nents in the following. Looking at terms (a) and (b) in (9), we
Þnd that the contributions that are proportional toare
for or for . From terms (c) and
(d) in (9), we obtain the terms proportional to. The results are

for and for .
Thus, we can write the linearized response at the th

harmonic in response to the perturbation at theth harmonic
as

(10)

with the coefÞcients given in terms of the harmonic series for
the conductance as described above. This allows the behavior
of the and coefÞcient functions to be related to the Volterra
representation of the original nonlinearity.

If we compare (10) (note we omitted the port indexes here)
to (1), we can see that the coefÞcients of the PHD model can be
explicitly calculated in terms of the Fourier series of the system
conductance nonlinearity of (7) in the limit asgoes to zero.
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TABLE I
OUTPUT OFSM SIMULATION F = 3 GHz,M = 2 , AND ORDER= 8

Keeping track of the term, we can also see that thecoef-
Þcients are the responses at theupper sidebandand that the
coefÞcients, with the same indices, are thelower sidebandre-
sponses. This is the direct way to identify the PHD model from
this SM analysis.

From basic mixer theory, if a signal consisting of the sum of
two tones at (angular) frequencies and , respectively, are
put through a nonlinear device, the discrete frequencies of the
response fall at frequencies satisfying

(11)

for and provided (to keep from double
counting). The integers and correspond to the order
of the mixing terms. If we further assume that one tone is
always small compared to the other, we can simplify (11) by
assuming all terms beyond theÞrst order of the small tone can
be neglected. This is equivalent to restricting .

We now set . For , we get the degen-
erate case of the harmonically related experiment of the design
approach of [5]. This corresponds to a small tone at theth har-
monic of the fundamental. Consideringas a positive inÞnites-
imal allows us to keep separate track of the two different terms
that contribute to the same frequencies in the output spectrum
due to different origins.

We consider the example for which GHz,
(small tone at 6 GHz), and order . HereÒorderÓis the order
of the HB analysis part of the SM analysis used. The spec-
tral response, linear in the perturbation signal, can, therefore,
be represented as in Table I. This represents the difference be-
tween the full output spectrum of the system with one large

and one small tone, and the output of the system with only the
single large tone (no small tone added). The second column is
the order of the large tone contributing to the frequency com-
ponent speciÞed in that row. A negative sign means the nega-
tive frequency component. The third column indicates the order
of the small tone (recall only terms for are consid-
ered). The fourth column indicates whether the contribution to
this frequency is at the lower or upper sideband (by keeping
track of ). We could also distinguish the sidebands simply by
checking the value of . There is only one contribution at fre-
quency ; this is an upper sideband. There are two contri-
butions to the next group of frequencies, from 3 to 18 GHz, in
the same alternating order of lower and upper sidebands. This
follows from the two different contributions of orders of the
large and small tones that can combine to give terms at each of
these frequencies. For example, at 9 GHz, theÞfth-order con-
tribution from the large tone at 3 GHz combines with the neg-
ative frequency component of the small tone at 6 GHz to give
a tone at GHz GHz GHz. The upper
sideband comes from a combination of aÞrst-order term in the
large tone with the positive term from the small tone because

GHz GHz GHz. There are no other combi-
nations possible to end up at 9 GHz. Eventually, at 21 GHz, there
are only upper sidebands. This is because for a lower sideband
to exist, it must correspond to the solution of (12) as follows:

GHz GHz GHz (12)

The solution to (12) is , which is beyond the order
value, and thus it is not calculated. This condition persists for the
rest of the frequencies. There is a table like this for each value
of .

In a simulation, using SM analysis, to be described, we can
set . In a real measurement, however,must be kept small,
but nonzero, typically approximately 1 kHz. In this case, there
are always both upper and lower sidebands at each frequency
provided their magnitude is large enough to measure and if the
frequency offset is not too small to resolve the two sidebands.
Therefore, in a real measurement, there would be second rows
in the table just below 21, 24, 27, and 30 GHz (for this example)
corresponding to the lower sidebands.

Through these calculations we determine thecoefÞcients
from the upper sideband responses and thecoefÞcients from
the lower sideband responses. This demonstrates that we only
need asingleupper sideband (small) signal excitation at each
port at each harmonic from which to extract bothand co-
efÞcients corresponding to upper and lower sidebands, respec-
tively. We do not need (at least) two small tones of different
relative phases as required by the method of [5].

For the simulation-based approach, the Agilent Advanced
Design System (ADS) SM analysis is used as the excitation.
A key advantage of this excitation is that the simulation is
much faster than a two-tone HB analysis since the only HB
analysis done in the former is that for the single large tone.
The linearization of the system is done automatically using
the Jacobian information already computed by the simulator
for the one-tone HB analysis. Another advantage is that the
SM analysis results in exactly (to numerical precision) the
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