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ABSTRACT
This paper explains how sampling frequency convertors can be used to acquire broadband
modulated waveforms. Their use is illustrated with a practical measurement example performed
on a “Large-Signal Network Analyzer“.

INTRODUCTION
Frequency convertors are an important part of large-signal network analyzers. They convert
signals which have a frequency in the GHz range to a much lower frequency, typically in the MHz
range. This frequency conversion to a much lower frequency is needed in order to be compatible
with the bandwidth restrictions of existing analog-to-digital convertors. Two types of frequency
convertors exist: mixing frequency convertors and sampling frequency convertors. In general,
mixer based convertors have the best sensitivity and noise rejection characteristics, and sampler
based convertors have the simplest architecture and the highest “instantaneous” bandwidth (by
this is meant the bandwidth covered by one acquisition cycle of the analog-to-digital convertor).
In this paper it is shown that a sampling frequency convertor, unlike a mixing frequency
convertor, can measure signals which have a modulation bandwidth which is many times higher
than the bandwidth of the analog-to-digital convertor that is used. This makes the sampling
frequency convertor ideal for advanced large-signal network analyzer applications.

SAMPLING FREQUENCY CONVERTOR BASICS
The schematic of a multichannel sampling frequency convertor is depicted in Fig. 1. The
microwave input signals xRF, yRF,... enter through matched transmission lines and travel towards
the sampling nodes of each channel. At the sampling node there is a switch which repetitively
closes for a very short time. The duration of the closing of the switch, which is called the sampler
aperture, is typically 10 ps. The rate at which the switch closes and opens is called the sampling
frequency, it is noted fS. The sampling frequency is generated by a repetitive pulse generator
which has a very fine frequency resolution. A typical value for the range of fS is 10 MHz to
20 MHz, with a resolution as fine as 1 mHz. Each time the switch closes it captures a small
amount of electrical charge from the transmission line center conductor, where this amount of
charge is proportional to the average voltage at the sampling node during the sampler aperture.
The sampled charge is filtered by a low pass filter having a cut-off frequency fLP which results in
the frequency converted signals xIF, yIF,... The mathematical theory, as well as more details on the
hardware, can be found in [1]. For now, we will assume that

fS > 2fLP . (1)
The condition described by (1) is valid in practice for the LSNA prototypes as developed by the
Hewlett-Packard Company and Agilent Technologies. Under the condition described by (1) the
frequency conversion characteristics as described in [1] can be summarized as follows. Assume
that the convertor input signal xRF is a sinusoidal signal with a frequency fRF which is represented
by the phasor ARF. One also assumes that the transmission lines and the low pass filter in Fig. 1



introduce negligible distortions. The output signal xIF will then be a sinusoidal signal with a
frequency fIF which is represented by a phasor AIF. AIF and fIF are given by equations (2), (3) or
(4), depending on the case.

if (fRF mod fS) < fLP then AIF = ARF and fIF = (fRF mod fS) (2)
if (-fRF mod fS) < fLP then AIF = conj(ARF) and fIF = (-fRF mod fS) (3)
if (fRF mod fS) > fLP and (-fRF mod fS) > fLP then AIF = 0 (4)
In the above equations the notation conj(.) stands for complex conjugate and (x mod y) stands for
the modulo operator meaning the “remainder of x divided by y”. The modulo operator is defined
for both negative and positive quantities for x, where the following relationship holds:

. (5)
Note that in general , which is counter-intuitive to many people.
As readily can be verified the condition described by (1) ensures that at most one frequency
component will be present in xIF. Expressed in words, these equations indicate that there are three
possibilities for xIF: a direct harmonic mixing product described by (2), an image harmonic
mixing product described by (3) or no detectable harmonic mixing product described by (4). The
latter is the case when all mixing products are removed by the low pass filter. Note the conjugate
operator in (3) which describes the case of the image mixing product.
In a practical measurement xRF may contain many different tones. In this case the frequency
conversion as described in (2) to (4) will apply to each tone separately. 
As is evident from (2) and (3) the frequency conversion is mathematically described by a modulo
operator, where the second argument is fS. In the following paragraphs will be shown how a smart
choice of the signal frequencies and the sampling frequency results in unique modulation
measurement capability which is unattainable by mixing frequency convertors.

CONVERSION OF A FUNDAMENTAL CARRIER AND HARMONICS
As a first simple case one considers the measurement of a microwave carrier with N harmonics as
described in [1]. In this case xRF is a multitone signal described by N phasors ARFk with
frequency fRFk, with k being the harmonic index. This is described in (6).

fRFk = k fC (6)
The set of frequencies fk for k ranging from 0 to N is called the signal “frequency grid“. In order
to perform the frequency conversion the value of fS is chosen such that

 . (7)

It can readily be shown that there is always a solution for fS within the frequency range of the
repetitive pulse generator under the condition that this range covers at least one octave. From (7)
it is clear that (2) applies to all components ARFk since k <= N such that

 . (8)
The final result is an xIF described by N phasors AIFk and corresponding frequencies fIFk as
defined by (9) and (10).

(9)

 . (10)
A practical example illustrates the above. Assume that we have the following constraints on our
frequency convertor hardware: fS ranges from 10 MHz to 20 MHz and fLP equals 4 MHz. These

x mod y–( ) y x mod y( )–=
x mod y–( ) x mod y( )–≠

fC mod fS( )
fLP
N-------<

fRFk mod fS( ) kfC mod fS( ) k fC mod fS( ) fLP<= =

AIFk ARFk=

fIFk k fCmod fS( )=



are the actual values for the LSNA prototypes as they were developed by Agilent Technologies.
Note that the condition described by (1) is always met. Imagine that one wants to measure a signal
with an fC equal to 1 GHz and with N equal to 3. According to (7) one may choose fS equal to
19.98 MHz since

(1 GHz mod 19.98 MHz) = 1 MHz < 1.333 MHz . (11)
Applying (2) results in the following set of frequencies at the output of the convertor: 
fIF1 = 1 MHz, fIF2 = 2 MHz and fIF3 = 3 MHz.

CONVERSION OF A MODULATED CARRIER WITH HARMONICS
A more complex case occurs when one starts to apply modulation to the carrier and its N
harmonics. For LSNA applications the modulation that is applied is usually chosen to be periodic.
In this case the signal xRF is a multitone signal that can be described by a set of phasors ARFkm
with a set of corresponding frequencies fRFkm, defined as

, (12)
with fM being the modulation frequency (the reciprocal of the modulation period). The harmonic
index “k“ ranges from 0 to N and the so called modulation index “m” ranges from -M to +M. The
latter corresponds to a total modulation bandwidth of (2 M fM). Since each frequency of the set
fRFkm is denoted by two indices “k“ and “m“ the set is called a “dual frequency grid“.
The first implementation of acquiring this kind of signals with an LSNA was implemented for

 . (13)
Since the modulation bandwidth can only be a fraction of fLP this LSNA mode of acquisition is
called “narrowband modulation mode“. In this mode one chooses fS in the same way as done in
the previous paragraph. The only additional constraint is that one needs to make sure that

. (14)
Note that fIFkm is used to denote the frequency of the frequency converted ARFkm, such that fIF10
refers to the frequency converted fundamental carrier and such that fIF20 refers to the frequency
converted second harmonic. The condition (14) implies that the modulation tones associated with
one harmonic do not overlap or coincide with the modulation tones associated with the next
harmonic. In other words, the order of the RF frequencies is preserved after frequency conversion.
The final result is an xIF described by phasors AIFkm and frequencies fIFkm as defined in (15) and
(16).

(15)

 . (16)
A practical example illustrates the above. Consider that the following conditions apply to the
signal to be measured: fC equals 1 GHz, N equals 3, fM equals 50 kHz and M equals 9. As readily
can be verified an fS equal to 19.98 MHz satisfies both (13) and (14). This results in the following
practical values for fRFkm and fIFkm:

fRFkm = k x 1 GHz + m x 50 kHz (17)
fIFkm = k x 1 MHz + m x 50 kHz . (18)

The problem with the “narrowband modulation mode“ of the sampling frequency convertor is that
one needs to make a compromise between N, the number of carrier harmonics to be measured,
and M, the number of modulation tones to be measured. This is a natural consequence of (13). An
elegant solution to this problem is described in [2]. The corresponding mode is implemented in
Agilent’s LSNA prototypes and it is called the “broadband modulation mode“. Note that the

fRFkm kfC mfM+=

2N 1+( )MfM fLP<

fIF20 fIF10– 2MfM>

AIFkm ARFkm=

fIFkm k fC mod fS( ) mfM+=



details of this method are described in [2].
The broadband modulation mode can be applied under the condition that

M fM < fLP . (19)
Note that there no longer is a compromise between N and M since N no longer appears in the
above equation. In other words, the full IF bandwidth fLP can be used for the modulation tones of
the fundamental as well as for all of the harmonics, regardless the number of harmonics. The trick
is the choice of fS. One chooses fS such that

 . (20)

This time the condition described in (2) holds for the frequencies fRFkm with m >= 0, while the
condition described in (3) holds for the frequencies fRFkm with m < 0. The final result is an xIF
described by phasors AIFkm and frequencies fIFkm as defined in (21) and (22):
if m >=0 then  and , (21)

if m < 0 then  and  . (22)
Consider the following practical example: fC equals 1 GHz, N equals 3, fM equals 50 kHz and M
equals 60. Note that the total modulation bandwidth equals 6 MHz (= 2 x 60 x 50 kHz). The
sampling rate fC is chosen to be 19.9999 MHz. This results in the following values for fIFkm:
if m >=0 then  and fIFkm = k x 5 kHz + m x 50 kHz, (23)

if m < 0 then  and fIFkm = -k x 5 kHz - m x 50 kHz. (24)
Note the presence of the conjugate in (24).
An original way to graphically illustrate the mapping of fRFkm to fIFkm corresponding to the
“narrowband modulation“ mode and the “broadband modulation“ mode is presented in Fig. 2 to
Fig. 8. In these figures each frequency of the set fRFkm or fIFkm is represented by a dot with as x-
coordinate the frequency value itself, with as y-coordinate the value of index “m” and with a dot-
size proportional to the value of index “k”. 
Fig. 2 shows the complete set fRFkm for the “narrowband modulation“ mode example. Fig. 3
shows a zoom of the same data around a frequency of 2 GHz (the second harmonic of the carrier
fundamental). Since the modulation frequency fM is small compared to fC all frequencies fRFkm
with the same index “k“ appear to be lined up vertically in Fig. 2. Fig. 4 represents the
corresponding set fIFkm for the “narrowband modulation” mode example. All frequencies fIFkm
are uniformly spread from 0 MHz to 3.5 MHz and are ordered the same way as the set fRFkm. 
Fig. 5 shows the complete set fRFkm for the “broadband modulation“ mode example. Fig. 6 shows
a zoom of the same data around a frequency of 2 GHz (the second harmonic of the carrier
fundamental). Since the modulation frequency fM is still small compared to fC all frequencies
fRFkm with the same index “k“ also appear to be lined up vertically in Fig. 5. Fig. 7 represents the
corresponding set fIFkm for the “broadband modulation” mode example. As can be seen on this
figure the order of the set of frequencies fIFkm is completely different from the order of the
corresponding set fRFkm. In this mode of operation the sampling frequency convertor behaves
more like a frequency scrambler. A zoom around 1 MHz is shown on Fig. 8 and shows the fine
structure of the frequency mapping. Each component fIFkm with a positive m has to its left the
component fIF(k-1)m and to its right fIF(k+1)m, each component fIFkm with a negative m has to its
left the component fIF(k+1)m and to its right fIF(k-1)m. Note that in “narrowband modulation“ mode
each component fIFkm has to its left the component fIFk(m-1) and to its right the component
fIFk(m+1).

fC mod fS( )
fM
2N-------<

AIFkm ARFkm= fIFkm k fC mod fS( ) mfM+=

AIFkm conj ARFkm( )= fIFkm k– fC mod fS( ) mfM–=

AIFkm ARFkm=

AIFkm conj ARFkm( )=



CONVERSION OF EVEN BROADER-BAND MODULATION SIGNALS
The LSNA “broadband modulation“ mode enables the measurement of signals with a modulation
bandwidth equal to 2 x fLP, which corresponds to 8 MHz for an Agilent LSNA. Recently a method
was developed to perform experiments with an even broader modulation bandwidth. 
The idea is to first apply a signal xRF, represented by the phasors ARFkm with corresponding
frequencies fRFkm as defined by (12), where xRF can be handled by a “narrowband modulation
mode“ or a “broadband modulation mode“. A value is calculated for fS and at the output of the
sampling frequency convertor one gets a signal xIF, represented by the phasors AIFkm with
corresponding frequencies fIFkm.
Next one applies a different signal xBRF, represented by the phasors ABRFkm with corresponding
frequencies fBRFkm defined as follows:

ABRFkm = ARFkm (25)
fBRFkm = k fC + m fBM , (26)

where fBM = fM + q fS , with q an integer number. Expressed in words, xRF and xBRF only differ
by the fact that xBRF has a modulation frequency which is an integer times fS higher than fM, the
modulation frequency of xRF.
The same value fS is then used for the sampling rate and at the output of the sampling frequency
convertor one gets a signal xBIF, represented by the phasors ABIFkm with corresponding
frequencies fBIFkm. Since

((k fC + m fBM) mod fS) = ((k fC + m fM + m q fS) mod fS) = ((k fC + m fM) mod fS), (27)
one can conclude that

ABIFkm = AIFkm (28)
fBIFkm = fIFkm , (29)

which actually means that xBIF = xIF. (30)
Expressed in words, the sampling convertor output signal does not change when one increases the
modulation frequency by an integer times the sampling rate. This is a very useful result. Consider
for example the “narrowband modulation“ mode conditions of the previous paragraph where fC
equals 1 GHz, N equals 3, fM equals 50 kHz and M equals 9. The sampling rate fC was calculated
to be 19.9800 MHz. The frequencies at the output of the sampling frequency convertor will not
change if one increases the modulation frequency fM to e.g. 40.01 MHz (= 50 kHz + 2 x
19.9800 MHz). The corresponding set fBRFkm is then given by

fRFkm = k x 1 GHz + m x 40.01 MHz . (31)
The set fBRFkm is shown in Fig. 9. Note that all frequencies having the same index “k“ no longer
appear to line up vertically since the total modulation bandwidth (720.18 MHz) has the same
order of magnitude as fC. The set fBIFkm is equal to the set fIFkm of the “narrowband modulation“
mode example shown in Fig. 4.

MEASUREMENTS
The usefulness of the above sampling schemes is illustrated by measurements. These
measurements are performed on the Hewlett-Packard LSNA prototype of the Catholic University
of Leuven, Belgium. The device-under-test is an on wafer .2µm x 100µm metamorphic HEMT on
GaAs provided by IMEC. LSNA two-tone experiments are performed on this component. 
For a first experiment the gate of the transistor is excited by a two-tone signal, where one tone has
a frequency of 3 GHz minus 100,097.656 Hz and where the other tone has a frequency of 3 GHz
plus 100,097.656 Hz. The dual frequency grid which is specified on the LSNA is defined as



follows: fC equals 3 GHz, N equals 6, fM equals 100,097.656 Hz and M equals 35. The LSNA
software calculates a useful fS equal to 19,999,951.172 Hz, which corresponds to a “broadband
modulation“ mode. Note that the fM and fS have many significant digits, in contradiction to the
examples that were given in the previous paragraph. This is caused by constraints related to the
LSNA analog-to-digital convertor.
As input signal we consider the incident voltage a1 at the gate, and as output signal we consider
the scattered voltage wave b2 at the drain of the transistor. Fig. 10 shows the power spectra (dBm)
of the fundamental of a1 and b2 as measured by the LSNA. In order to avoid cluttering, the
frequency axis is given relative to the carrier fundamental (3 GHz). Note that only the
components having an index “m“ from -10 to +10 are presented. Note the presence of
intermodulation products in b2.
For a second experiment one changes the frequencies of the two-tone experiment by subtracting 7
times fS from the first tone frequency and by adding 7 times fS to the second tone frequency. One
tone now has a frequency of 3 GHz minus 140,099,755.86 Hz and the other tone has a frequency
of 3 GHz plus 140,099,755.86 Hz. Since an integer times fS has been added to the modulation
frequency there is no change in the IF set of frequencies fIFkm. As such the LSNA data acquisition
is capable of measuring all spectral components without changing any settings. Fig. 11 shows the
measured power spectra (dBm) of the fundamental of a1 and b2. The big difference between this
figure and Fig. 10 are the MHz units in stead of kHz units on the frequency axis. Please be aware
that the example is only given to illustrate the capabilities of the sampling frequency convertor.
Significant differences between the power levels shown in Fig. 10 and Fig. 11 are present due to
the fact that the standard calibration procedure of the LSNA system was not designed to handle
very wide tone spacings and is as such not accurate for this kind of measurements.
The measured spectra of the modulated signals can be represented in the time domain, as shown
in [3]. All 6 measured harmonics having each 71 modulation components are taken into account
in order to make the time domain representations. Fig. 12 shows the time domain representation
of b2 for the close-to-280 MHz tone-spacing measurement with a time range of about 8 ns. Note
that one period of the envelope contains about 21 carrier oscillations. Fig. 13 shows a time
domain representation of b2 for the close-to-200 kHz tone-spacing measurement having the same
8 ns time range. On this time scale no noticeable modulation can be detected. Fig. 14 shows the
same b2 with a much larger time range of 10 µs. This time range corresponds to one period of the
modulation envelope and contains no less than 30,000 carrier oscillations. The time domain plots
clearly show the orders of magnitude difference in the time scales of the modulation for both two-
tone experiments.

CONCLUSIONS
It was explained how a sampling frequency convertor can be used to convert the frequencies of
the tones of a broadband periodically modulated carrier and his harmonics into frequencies which
are compatible with analog-to-digital convertor technology. Extremely wide modulation
bandwidths can be achieved by adding an integer times the sampling frequency to the modulation
frequency. The principle was illustrated in the frequency as well as in the time domain by
performing a practical LSNA two-tone measurement having a tone-spacing of about 280 MHz.
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FIGURES

Fig. 1 Schematic of a sampling frequency convertor
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Fig. 2 The set fRFkm for “narrowband modulation” mode

Fig. 3 The set fRFkm for “narrowband modulation” mode (zoom @ 2 GHz)

Fig. 4 The set fIFkm for “narrowband modulation” mode

Fig. 5 The set fRFkm for “broadband modulation” mode

Fig. 6 The set fRFkm for “broadband modulation” mode (zoom @ 2 GHz)
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Fig. 7 The set fIFkm for “broadband modulation” mode

Fig. 8 The set fIFkm for “broadband modulation” mode (zoom @ 1 MHz)

Fig. 9 The set fRFkm for “even-broader band modulation” mode
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Fig. 10 Two-tone experimental result (tone spacing = 200,195.312 Hz)

Fig. 11 Two-tone experimental result (tone spacing = 280,199,511.720 Hz)

Fig. 12 Time domain waveform b2 (tone spacing = 280,199,511.720 Hz)

Fig. 13 Time domain waveform b2 (tone spacing = 200,195.312 Hz)

Fig. 14 Time domain waveform b2 (tone spacing = 200,195.312 Hz)
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