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ABSTRACT  —  The PHD nonlinear behavioral model is extended 

to handle multiple large tones at an arbitrary number of ports, 

and enhanced for dynamic long-term memory. New capabilities 

are exemplified by an amplifier model, derived from large-signal 

network analyzer (LSNA) data, valid for arbitrary impedance 

environments, and a model of a 50GHz integrated mixer, 

including leakage terms and IF mismatch dependence. Dynamic 

memory is demonstrated by an HBT amplifier model identified 

from up-converted band-limited noise excitations. The models are 

validated with independent LSNA component data or, for 

simulation-based models, with the corresponding circuit models. 

Index Terms — Design automation, distortion, frequency 
domain analysis, microwave measurements, nonlinear circuits. 

I. INTRODUCTION 

The Poly-Harmonic Distortion (PHD) nonlinear model, 

presented in [1]-[2], is a rigorous, frequency-domain, black-

box nonlinear behavioral modeling approach for microwave 

and rf module and subsystem design. Very accurate models, 

implemented in commercial simulators have been generated 

from automated large-signal measurements using large-signal 

network analyzers (LSNAs), and from simulations starting 

from detailed circuit-level models of an IC or component. The 

models can be easily and unambiguously identified from one 

of several related, simple, multiple-tone experiment designs. 

Key features of the PHD model include the ability to predict 

distortion through cascaded chains of nonlinear components 

under large-signal drive in the presence of small to moderate 

mismatches at both the fundamental and harmonic frequencies. 

The model can predict PAE, output match (the proper 

representation of “Hot S22”) including the required terms 

proportional to the conjugate of the incident waves at the 

output port, both even and odd harmonics, and the parametric 

dependence of bias voltages and currents. The resulting 

models protect intellectual property (IP), thereby promoting its 

reuse and sharing. The models reduce design breadboard 

costs, improve simulation speed compared to the detailed 

circuit model (if one exists), and, in the case of measurement-

based models, embody a sound methodology for using large-

signal data directly in the design of nonlinear microwave & RF 

systems. This, and independent research [3], has demonstrated 

that the rigorous non-analytic spectral mappings of this class 

of models are required to predict nonlinear figures of merit, 

such as ACPR, of composite systems of imperfectly matched 

devices.  

II. GENERALIZED PHD FORMULATION 

The generalized PHD modeling approach is based on a set of 

systematic and controlled approximations to the multivariate, 

nonlinear, complex-valued spectral mappings from input 

phasors to output phasors that define the multi-port system in 

the frequency domain. The full nonlinear mapping is 

approximated by the sum of a simpler nonlinear mapping and 

a linear mapping. This is indicated in (1). 
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Here the indices p, q, and r specify the ports, k, l, and m 

indicate spectral components (e.g. harmonics or inter-

modulation components), Aql is the incident wave at port q at 

frequency index l, Bpk is the transmitted or reflected wave at 

port p and spectral component k. LSOP stands for large-signal 

operating point, which is specified by the subset of Arm terms 

retained in the nonlinear mappings Fpk, (and the S and T terms). 

The dependence on all other input spectral components is 

approximated as linear, which is given by the contributions in 

the summations in (1). That is, the Aql terms appearing in the 

square brackets are (subsets) of those incident waves that are 

not arguments of the nonlinear functions F, S, and T. P terms 

are pure phases, which are determined from time-invariance 

considerations. For example, if we consider the simplest case 

where the LSOP is established by a single large tone incident 

on port 1, we obtain the models of [1]-[2], which, can be 

written, for 11( )j A
P e

φ= , according to (2). 
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We see the nonlinear mappings in this case depend only on a 

single real variable. All the other incident wave dependences 

are linear. This is a dramatic simplification, and enables 

simple characterization and direct identification. Fpk is the 

response of the (matched) system to the stimulus of a single 

large input tone at the input. The S and T terms can be 

interpreted as the Jacobian of the input-output mapping 

evaluated at this simple signal. These S and T terms, however, 

which are functions of the drive, allow the model to predict the 

component behavior for small to moderate mismatches at port 

2 at the fundamental and harmonic frequencies, since they 

represent the response, linearized around the simple LSOP. 

 

A. PHD model for arbitrary impedances from measured data 

Using the general formulation (1), we now go beyond (2) by 

considering two cases in which the LSOP is defined by more 

complicated signals than a single tone incident on the input. 

For an amplifier, when a tone injected into the output port 

becomes very large, due perhaps to a very large mismatch, the 

approximation (2) of a 1-tone LSOP for the component model 

begins to degrade. For more accuracy one simply retains the 

full complex A21 dependence of the nonlinear mappings F, S, 

and T. In this case, the LSOP depends on three real variables, 

|A11|, |A21|, and Phase(A21). The extended model is therefore 

nonlinear in all of the phasors at the fundamental frequency, 

while remaining linear in all of the harmonics (if they are 

retained in the model). The sum in (1) is over all ports and all 

harmonic frequencies; the sum no longer includes A21, as it did 

in (2), since A21 is now an argument of the F, S, and T terms. 

A WJ Communications FP2189 GaAs HFET transistor was 

chosen to demonstrate the capability of the extended PHD 

amplifier model for arbitrary impedances. For the given 

example, a fundamental only (no harmonic terms are included) 

PHD model was identified. The transistor is specified with an 

output power 1dB compression point of 30dBm and a 

frequency range from 50MHz to 4GHz. The part comes in a 

SOT-89 package and was mounted on a PC board, together 

with carefully designed calibration standards to allow de-

embedding to the device planes. A calibration of the LRRM 

type was performed on the LSNA instrument reported in [4]. 

To identify a PHD model with two large tones, it is required to 

define experiments for a very wide range of A11 and A21 

values. Given the device output characteristics, this is 

equivalent to a synthetic load-pull measurement over the entire 

Smith chart. New software controlling the LSNA was 

developed to characterize the device under these conditions. 

The device was swept in frequency from 0.25 GHz – 4 GHz, 

over a wide range of input powers. A simplified schematic of 

the measurement setup is shown in Fig.1. One synthesizer is 

used to generate A11 and a second synthesizer is used to 

generate the large-signal A21 waves, thereby synthesizing 

reflection coefficients equal to A21 divided by the resulting 

B21.  

 

Fig. 1 Simplified schematic of the measurement setup 

 

The model extraction algorithm of [1] was extended to 

identify the enhanced PHD model. Fig. 2 shows a subset of the 

measured LSNA data. The operating conditions are: drain bias 

voltage 8V, drain current 250mA, fundamental frequency 

1GHz, incident power (A11) 17dBm. The contours on the 

Smith chart, generated from the identified model, represent the 

net output power of the transistor with a step of 100mW. The 

maximum net output power corresponds to 1.4W. The dots 

represent the actual synthesized output reflection coefficients 

that were used to identify the enhanced PHD model, which is 

in essence an interpolator between the synthesized output 

reflection coefficients.  

 

 

Fig. 2  Synthesized output reflection coefficients (points) and 

simulated power contours (lines) from enhanced PHD model. 

 

The extended PHD model, when implemented in a simulator, 

is in perfect agreement with the transistor characteristics at all 

measured data points, over the entire range of measured 

characteristics, valid over frequency, input power, and output 

impedances over the entire Smith chart. Between measured 

data points, the model interpolates smoothly. This model is an 

example of applying the black-box behavioral techniques at 

the transistor level, rather than at the full IC level. It can be a 

viable substitute for the classic “compact” transistor models 

for many applications. 
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B. PHD Mixer model with leakage and IF mismatch 

A second, and distinct generalization of (2) is embodied by 

a three-port device, this time with the two large signals 

determining the LSOP, incident at different ports, at distinct 

frequencies. This is the case of a nonlinear mixer (e.g. where 

both the LO and RF signals are assumed large and produce 

their own harmonics and inter-modulation products). 

Assuming the LO and RF frequencies are incommensurate, it 

can be proved that the LSOP depends only on the magnitude 

of the large LO and RF signal amplitudes. 

The extended PHD methodology was applied in simulation 

to a 50GHz integrated mixer manufactured by Agilent 

Technologies’ High Frequency Technology Center. The IC 

contains over 40 III-V hetero-junction bipolar transistors, each 

modeled by the Agilent HBT nonlinear transistor model [5]. 

Linear terms at the IF port at intermodulation frequencies were 

retained to model mismatch effects. Fig. 3 compares 

simulations of conversion gain with the PHD model to the 

underlying circuit model from which it was generated. The 

simulation were performed using Agilent ADS. In this 

comparison, the IF load is 10 ohms, far from the 50 ohm 

match in which the model was identified. This is a direct 

validation of the accuracy of the linear approximations in (1) 

for mismatch terms at the IF frequencies. The conversion gain 

is a sensitive function of the IF load, yet the PHD model is 

remarkably accurate. The extended PHD model predicts LO 

and RF leakage terms, as well as scores of additional port-to-

port couplings in comparable agreement. Finally, the PHD 

model achieves a factor of about 6 times speed improvement 

over the detailed circuit model, providing a significant 

advantage for system simulation. 

 

C. Long-term Dynamic Memory Extension 

The formulation (1) describes instantaneous mappings from 

the incident A-waves to the output B-waves. The above results 

demonstrate that (1) is sufficient to produce accurate models 

for CW applications. There are important cases, however, 

where the static mapping is no longer accurate for many 

components. The reason has to do with the fact that complex 

stimuli (e.g. broad-band modulation, pulsed RF, etc.) may 

excite additional slow dynamical variables of the component, 

such as temperature or bias supply voltage, that in turn affect 

the nonlinear mapping of the rf signals. When the output 

phasors depend not only on the instantaneous input RF 

phasors, but also on other slowly varying state variables of the  

system, we get long-term dynamic memory effects. 

It is possible to extend the PHD model to incorporate 

additional dynamic “hidden” variables. The example presented 

here is the DC-20 GHz HBT amplifier model considered in [1]  

but this time excited by band-limited, normally distributed 

noise. It is possible to extend the PHD model to incorporate 

additional dynamic “hidden” variables. 
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Fig.3: Extended PHD mixer model (o);  Circuit model (+)  

(a) Conversion gain (up-conversion) in dB versus RF power 

(dBm) and (b) conversion phase in degrees versus RF power 

(dBm) for an LO power of 0 dBm and an IF load of 10 Ohm. 

  

The example presented here is the DC-20 GHz HBT amplifier 

model considered in [1], but this time excited by band-limited, 

normally distributed noise. The modeled amplifier includes a 

non-ideal bias circuit through which can pass low-frequency 

signals, generated by the nonlinearity of the amplifier. We 

assume neither the bias pin nor the bias circuit is accessible; 

both are considered part of the black box. The only access we 

have is to the RF ports. 

 The model was simplified by assuming a perfect output 

match, and only the dependence of B21 on A11 and the hidden 

state variable was considered. For this example, 20MHz BW 

noise, centered at 2.6 GHz, is used to excite the system. 
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Plotting the output B21-wave as a function of the input A11 

wave proves the presence of memory. One input amplitude A11 

results in a whole range of output amplitudes, especially at the 

high input levels. This is shown in Fig. 4. At an input 

amplitude of  7dBm the output amplitude ranges from 13dBm 

to 16dBm. This is a clear manifestation of a memory effect. 
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Fig. 4:  Amplitude of B21 (dBm) vs. amplitude of A11 (dBm) 

 

System identification techniques were used to “discover” the 

hidden variable. The state variable was estimated by an 

exponential moving average filter applied to the squared 

magnitude of the input signal. The correlation between B21 and 

this estimate, as a function of the filter delay parameter, was 

used to identify the timescale. In this case, an optimal time 

delay parameter, noted τ,  was determined to be 110 ns. With 

the new variable identified, the two-dimensional functional 

mapping from A11 and the new state variable is easily 

determined. The final relationship between B21(t) and A11(t) is 

described by the following equation, whereby F(.,.) is 

implemented as a two dimensional lookup table. 
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 The dynamic memory extended PHD model is implemented 

as a first-order differential equation in the envelope domain, 

using the frequency domain device (FDD) of Agilent ADS, 

according to [6]. The model is compared to the detailed circuit 

model of the amplifier in Fig. 5. The results demonstrate that 

the extended PHD model with dynamic memory tracks the 

result of the circuit model very well, even for very large values 

of A(t). The maximum deviation between the model and the 

circuit is at a level of about -16dBm, 32dB lower than the 

maximum output amplitude. Note that the static (memoryless) 

PHD models of [1]-[2] would  result in a single line 

characteristic for figure 4, completely unable to capture the 

multi-valued set of B-waves for a given A-wave. 

 

IV. Conclusion 

The PHD nonlinear behavioral model has been generalized for 

an arbitrary number of RF and DC ports, fundamental 

frequencies, and large signal tones. It has been demonstrated 

to be accurate over power, frequency, and bias, at matched as 

well as strongly mismatched conditions. The modeling 

methodology has been applied, successfully, at the transistor 

level and the complete IC level, for both two and three-port 

nonlinear components. The present infrastructure allows the 

user to trade speed for accuracy by including more signals in 

the nonlinear mapping and/or by keeping more linear terms 

representing mismatch at harmonic or inter-modulation 

frequencies. The model has been extended for long-term, 

nonlinear dynamic memory, such as required to model self-

heating and bias-line interactions under complex stimulus-

response conditions. These model capabilities enable accurate 

simulations of cascaded chains of multi-port nonlinear devices 

for RF system design from measurement and simulation. 
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Fig. 5 Difference (dBm) between the PHD model with 

dynamic memory and the  circuit-level model as a 

function of the amplitude of A11 (dBm) 
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